在进行连续插补的时候,用户在每段运动轨迹中,都可以添加多组io操作,包括普通的IO控制,及精确的PWM/PSO输出控制。
运动控制卡中的PWM一般用于控制电机的速度和位置,实现精确的运动控制。
PWM应用一:电机调速
电机的调压调速和PWM调速是两种不同的电机控制方式。
编码器分辩率
23位编码器的分辨率为8388608
马达型号说明:

马达铭牌:
台达 A2 伺服的脉波来源众多,例如 主编码器,辅助编码器,脉波命令,可用于定位命令(PT模式),高速抓取/比较,凸轮主轴脉波等等。此外,伺服 CN 1 也可将各种脉波输出,供上位控制器计数,由于参数众多,常常使人混淆。本文将相关功能与参数绘製成方块图以利快速全盘理解,供读者参考。驱动器脉波输入来源如上图所示,左侧为脉波输入源,分别说明如下:主编码器:由 CN 2 接口输入,驱动器经由通讯获得编码器的位置,单位是PLS,用于表示马达的位置,主要作为伺服位置环/速度环 控制使用,由于解析度太高,不
什麽是 智能伺服?2022-12-20 21:22:39
笔者对于 智能伺服 的定义,须包含下列条件:马达驱动(Drive):传统伺服驱动器的功能,着重高响应与稳定性,并且要易于调整.运动控制(Motion):路径命令规划,例如点对点,直线/圆弧补间或电子凸轮 …的部分.开发平台(Platform):可编程的开发环境,以灵活调用上述功能,满足多变的应用!简而言之,智能伺服就是传统伺服驱动器(或称纯伺服),再加上运动控制器的功能.运动功能可以做的很複杂,也可以仅提供简单的点对点命令.编程的部分 可以提供语法编写,或其他更简易的编辑方式皆可!智能伺服的 优
机械设计中,通常会藉由传动元件(例如齿轮,皮带,链条,螺杆… 等等),将动力传递到机械末端来工作。然而,由于传动机构的挠性,背隙 … 等因素,会对机械的精度有不良的影响!本文提供一种量测 “传动误差” 的方法,不需要昂贵的仪器就可以做到 …原理概述:如下图,轴 A -> 轮 B 之间有许多传动元件:图(一)传动精度检测架构图若想瞭解 轴 A -> 轮 B 之间的传动误差有多大
本文针对 圆周运动 机构(如 CNC 刀塔/刀库,分度盘,飞剪旋转刀) 提供一计算工具,以快速求出伺服的 电子齿轮比,并提供额外的模拟资讯,来评估各项 系统参数 是否合理.使用步骤如下:输入 转盘一周的 工位(或刀具)数目 C输入 一个工位 的行程值 P,单位 PUU(使用者单位,或命令脉波数)自动算出 一周总行程 C×P,即台达伺服的参数 P2-52输入 机械的 减速比(无减速时为 1:1)输入 编码器一圈(PLS)数,即电子齿轮比
本文针对 皮带 或 滚轮机构(不包含 分度盘/刀塔)[注 1],只要输入 机械参数与使用者指定的脉波单位(PUU),就能算出对应的齿轮比.同样也提供模拟资讯,根据输入的工作速度(V),算出 马达转速 与 上位机脉波频率,是用来验证 系统需求 是否满足的好帮手!使用步骤如下:输入 使用者单位(PUU)与 机械单位(mm)的关係输入 机械的 减速比(无减速时为 1:1)输入 滚轮的 直径(D) 或 圆周长输入 编码器一圈(PLS)数,即电子
本文针对常见的 丝杆机构 提供一个工具程式,以便快速求出伺服的 电子齿轮比,并提供额外的模拟资讯,来评估各项 系统参数 是否合理.使用步骤如下:输入 使用者单位(PUU)与 机械单位 的关係输入 机械的 减速比(无减速时为 1:1)输入 丝杆的 导程(丝杆转一圈 机械移动的距离)输入 编码器一圈(PLS)数,即电子齿轮比 1:1 时,要收到多少(PUU)伺服才会走一圈!按下 “计算齿轮比” 即可得到 分子:分母 的数值输入 机