现在我们正式进入矩阵的学习了,矩阵Matrix这个词我相信小伙伴们第一次接触,基本就是在小时候看黑客帝国的时候,黑客帝国中有个经典的场景,就是数字世界在解放后的尼奥双眼中已经变成了一串串数字瀑布流,就是下面:一串串的数字流组成了一个“数字集合矩形块”,这个大概就是我们小时候不知不觉接触的矩阵原型了。我们再来看下数学中的矩阵写法,如下图:咋一看矩阵就是一个三行三列的数字集合。当然我们也可以写一个两行两列,或者四行四列,这些也是矩阵,那么我们可以说矩阵就是m行n列的数字集合,当然了假如m = 1或者
1. 简介计算机图形学中的应用非常广泛的变换是一种称为仿射变换的特殊变换,在仿射变换中的基本变换包括平移、旋转、缩放、剪切这几种。本文以及接下来的几篇文章重点介绍一下关于旋转的变换,包括二维旋转变换、三维旋转变换以及它的一些表达方式(旋转矩阵、四元数、欧拉角等)。2. 绕原点二维旋转首先要明确旋转在二维中是绕着某一个点进行旋转,三维中是绕着某一个轴进行旋转。二维旋转中最简单的场景是绕着坐标原点进行的旋转,如下图所示:如图所示点v 绕 原点旋转θθ 角,得到点v’,假设 v点的坐标是(x, y)
1 围绕原点的旋转如下图, 在2维坐标上,有一点p(x, y) , 直线opの长度为r, 直线op和x轴的正向的夹角为a。 直线op围绕原点做逆时针方向b度的旋转,到达p’ (s,t) s = r cos(a + b) = r cos(a)cos(b) – r sin(a)sin(b) (1.1)t = r sin(a + b) = r sin(a)cos(b) + r cos(a) sin(b) (1.2)其中 x = r cos(a)