少有人走的路

勇哥的工业自动化技术网站

python知识导航贴,持续更新

C# 语言高级特性知识导航贴,持续更新

netMarketing类库: 类库说明

本站视觉相关教程整理贴子,持续更新

C++相关导航贴,持续更新

本站收费服务公告(netMarketing源码,工业自动化行业培训班等)

2020年勇哥的机器视觉实验项目清单(大纲)

本站连载贴子系列,持续更新中……

勇哥的免费视频教程清单

勇哥在B站发布的视频清单

运动控制专题,持续更新

线性代数——坐标系空间转换

线性代数——坐标系空间转换二维坐标系转换二维坐标系的变换分为旋转变换和平移变换。旋转变换假设已知基坐标系XOY中的一点P(x,y),坐标原点为O,绕点O旋转θ,可以求得点P在新坐标系X'OY'中坐标值(x',y'),如下图所示:求解x'和y'的关键是坚持用已知的边做斜边来求解,结合上图利用三角函数可以求得:x'=x·cos(θ)+y·sin(θ)y'=y·cos(θ)-x·sin(θ)那么点P在X'OY'中的坐标值为

已知三点在两个坐标系中的坐标,求两个坐标系的转换关系

数学模型已知两个坐标系在各方向上尺度缩放比例一致,两个坐标系的转换关系可以用7个参数来表示,3个旋转参数,3个平移参数,1个比例参数。已知三点在A、B两个坐标系中的坐标,那么这7个参数可以唯一确定。坐标转换的数学模型为:其中,λ是比例参数,R是旋转矩阵,Δ是平移向量,A、B分别是两个坐标系中的坐标。比例参数λ最容易计算旋转矩阵R是一个3x3的正交矩阵,有3个自由度。可利用反对称矩阵S来构造旋转矩阵R:那么其中I是单位矩阵,这里R只有a、b、c三个变量,解出a、b、c即可确定旋转矩阵R。这样(3)

已知两个坐标系下的坐标,求坐标系之间的转换矩阵(二)

包含平移和旋转变换:#include <iostream> #include <GTEngine/Mathematics/GteConvertCoordinates.h> using namespace gte; // #define Vector4<double> Vector<4, double> int main(int argc,

已知两个坐标系下的坐标,求坐标系之间的转换矩阵(一)

本例子只有旋转,没有平移#include <iostream> #include <GTEngine/Mathematics/GteConvertCoordinates.h> using namespace gte; // #define Vector4<double> Vector<4, double> int main(int arg

坐标系之间的简单变换

我们知道autocad中的ucs指令可以变换坐标系,然后可以查询同一个点在不同坐标系下的位置。勇哥想实现这个功能,因此先收集一些资料。1.坐标系变换    在图形学中,经常需要从一个坐标系变换到另一个坐标系。如下图,两个坐标系xoy和 。        在xoy坐标系中的坐标分别为   。       P在xoy坐标系中的坐标分别为 (x, y)。

如何通俗的解释仿射变换?

知乎里有些扫盲贴真是精华,讲得相当通俗易懂。 把复杂的东西讲清楚也是件不容易的事,这篇文章的作者是用了真心。简单来说,“仿射变换”就是:“线性变换”+“平移”。先看什么是线性变换?1 线性变换线性变换从几何直观有三个要点:变换前是直线的,变换后依然是直线直线比例保持不变变换前是原点的,变换后依然是原点比如说旋转1.1 代数简单讲一下旋转是怎么实现的,可以让我们进一步了解代数是怎么描述线性变换的。你可以手动操作下,会发现旋转矩阵在不断变化(为了方便观察旋转,我标记出一个顶点):总结下来,线性变换

affine transformation matrix 仿射变换矩阵 与 OpenGL

变换模型是指根据待匹配图像与背景图像之间几何畸变的情况,所选择的能最佳拟合两幅图像之间变化的几何变换模型。可采用的变换模型有如下几种:刚性变换、仿射变换、透视变换和非线形变换等,如下图:参考: http://wenku.baidu.com/view/826a796027d3240c8447ef20.html 其中第三个的仿射变换就是我们这节要讨论的。仿射变换(Affine Transformation)Affine Transformation是一种二维坐标到二维坐标之间的线

几何变换详解

在三维图形学中,几何变换大致分为三种,平移变换(Translation),缩放变换(Scaling),旋转变换(Rotation)。以下讨论皆针对DirectX,所以使用左手坐标系。平移变换将三维空间中的一个点[x, y, z, 1]移动到另外一个点[x', y', z', 1],三个坐标轴的移动分量分别为dx=Tx, dy=Ty, dz=Tz, 即x' = x + Txy' = y + Tyz' = z + Tz平移变换的矩阵如下。缩放变换将模型

C# Drawing.Drawing2D.Matrix类,二维矩阵几何变换的3x3仿射矩阵类

本文介绍的Matrix,是.net自带的类. 其命名空间为:System.Drawing.Drawing2D注意并不是netMarketing中那个netMarketing.graphics.Matrix在GDI+中,可以在Matrix对象中存储仿射变换。由于表示仿射变换的矩阵的第三列总是(0,0,1),因此在构造Matrix对象时,只需要指定前两列的6个数。语句:Matrix myMatrix = new Matrix(0, 1, -

C# 一个gdi+中应用矩阵进行二维变换图片的例子

Introduction2D image transformation in .NET has been very much simplified by the Matrix class in the System.Drawing.Drawing2D namespace. In this article, I would like to share with the reader on the use of Matrix class f
<< 1 2 3 > >>
«    2025年12月    »
1234567
891011121314
15161718192021
22232425262728
293031
控制面板
您好,欢迎到访网站!
  查看权限
网站分类
搜索
最新留言
文章归档
网站收藏
友情链接

Powered By Z-BlogPHP 1.7.3

Copyright www.skcircle.com Rights Reserved.

鄂ICP备18008319号


站长QQ:496103864 微信:abc496103864