心得笔记字面意思,眼代表眼睛,这里指的是我们的工业相机;手,指的是我们的运动部分,比如机械手或者运动控制系统;眼在手上,就是相机按照在运动轴上面,跟随运动的某个轴一起运动,这种标定就是图像和机械点一一运动去做标定。眼在手外,就是相机固定一个位置拍照,机械手或者运动部分不会带动相机,这个时候标定就要一次性拍全视野,然后机械部分再一一针对图像的上点做好对应关系,然后标定。这两种标定是我们图像和运动部分联合主要的两种标定方法,都可以实现图像转机械运动,就是标定关系不一样而已,结果都是一样的!眼在手上就
今天要给大家分享一点关于Halcon测量圆直径(半径)的方法。首先容我啰嗦两句:之所以要对这个看似很基础的问题进行探讨,主要原因有二,其一是这个问题确实困扰了我一段时间,当然这主要是由于我自己经验不足所致;其二是为了解决这个问题,我在网上查阅了很多博客资料,突然发现一件比较有趣的事情——网上多数能搜索到的关于这个问题的博客居然都主动避开了Halcon设计者的初衷,即最简单实现它的方式,反而和我这个经验不足的家伙一样,采用了自以为合理的解决方案——而且居然还是相近甚至相同的思路。针对这个现象,我后
Halcon模板匹配算子find_shape_model里的参数Row, Column, Angle(单位:弧度)含义是什么?find_shape_model(Image : : ModelID, AngleStart, AngleExtent, MinScore, NumMatches, MaxOverlap, SubPixel, NumLevels, Greediness
一、提高Halcon的运算速度,有以下几种方法:1、Multithreading(多线程)2、Automatic Parallelization(自动操作并行化)3、Compute devices,利用GPU提速,如果显卡性能好,至少可以提高5~10倍的运算速度二、多线程1、官方自带的例程get_operator_info.hdev,可以查看支持多线程的算子;* Determine the multithreading information
get_m
图像噪声是图像在获取或传输过程中受到随机信号干扰,妨碍人们对图像理解及分析的信号。很多时候将图像噪声看作多维随机过程,因而描述噪声的方法完全可以借用随机过程的描述,即使用其概率分布函数和概率密度分布函数。图像噪声的产生来自图像获取中的环境条件和传感元器件自身的质量,图像在传输过程中产生图像噪声的主要因素是所用的传输信道受到噪声污染。一、噪声类型1、椒盐噪声(盐=白色,椒=黑色)椒盐噪声是数字图像中的常见噪声,一般是由图像传感器、传输信道及解码处理等产生的黑白相见的亮暗点噪声,椒盐噪声常由图像切割
理论基础一、频率特征是图像的灰度变化特征,低频特征是灰度变化不明显,例如图像整体轮廓,高频特征是图像灰度变化剧烈,如图像边缘和噪声。一个重要的经验结论:低频代表图像整体轮廓,高频代表了图像噪声,中频代表图像边缘、纹理等细节。什么时候使用傅里叶变换进行频域分析?具有一定纹理特征的图像,纹理可以理解为条纹,如布匹、木板、纸张等材质容易出现。 需要提取对比度低或者信噪比低的特征。 图像尺寸较大或者需要与大尺寸滤波器进行计算,此时转换至频域计算,具有速度优势。因为空间域滤波为卷积过程
一、图像分割思想图像分割的主要算法:1.基于阈值的分割方法2.基于边缘的分割方法3.基于区域的分割方法4.基于聚类分析的图像分割方法5.基于小波变换的分割方法6.基于数学形态学的分割方法7.基于人工神经网络的分割方法基于阈值的分割方法阈值分割方法作为一种常见的区域并行技术,就是用一个或几个阈值将图像的灰度直方图分成几个类,认为图像中灰度值在同一类中的像素属于同一物体。由于是直接利用图像的灰度特性,因此计算方便简明、实用性强。显然,阈值分割方法的关键和难点是如何取得一个合适的阈值。而实际应用中,阈
一、边缘提取1、设置ROI兴趣区域2、快速二值化,并连接相邻区域。这样做的目的是进一步减少目标区域,通过二值化将目标区域大概轮廓提取出来3、提取最接近目标区域的轮廓常用函数有boundary,gen_contour_region_xldboundary(获取一个区域的边界)Region (input_object) Regions for which the boundary is to be computed. &nbs
*如果是畸变图,需要先校正
read_image (Image, 'D:/1.bmp')
get_image_size (Image, Width, Height)
*彩色转灰度图
count_channels (Image, Channels)
if (Channels == 3 or Channels == 4)
一、先来看理论:摘自论文《基于HDevelop的形状匹配算法参数的优化研究》1. Shape-Based matching的基本流程HALCON提供的基于形状匹配的算法主要是针对感兴趣的小区域来建立模板,对整个图像建立模板也可以,但这样除非是对象在整个图像中所占比例很大,比如像视频会议中人体上半身这样的图像,我在后面的视频对象跟踪实验中就是针对整个图像的,这往往也是要牺牲匹配速度的,这个后面再讲。基本流程是这样的,如下所示:⑴首先确定出ROI的矩形区域,这里只需要确定矩形的左上点和右下点的坐标即