一、Halcon遍历xld,halcon中统计数目归纳下:图形元组变量计算数目 是使用 count_obj算子统计控制元组变量计算数目 是通过|元组名称|进行的(对控制类型数组用||统计)count_obj(DeformedContours, NumberContours)
area_center_xld (DeformedContours, Area1, Row1, Column1, PointOrder)
 
XLD: eXtended Line Descriptions 亚像素轮廓1、何谓亚像素?面阵摄像机的成像面以像素为最小单位。例如某CMOS摄像芯片,其像素间距为5.2微米。摄像机拍摄时,将物理世界中连续的图像进行了离散化处理。到成像面上每一个像素点只代表其附近的颜色。至于“附近”到什么程度?就很困难解释。两个像素之间有5.2微米的距离,在宏观上可以看作是连在一起的。但是在微观上,它们之间还有无限的更小的东西存在。这个更小的东西我们称它为“亚像素”。实际上“亚像素”应该是存在的,只是硬件上没有个
一、HALCON 12.0例程里有一个类似的,Ctrl+E打开例程,搜关键字“circle”或者"ball"就行。请重点关注下measure_circles.hdev,circles.hdev,union_cocircular_contours_xld.hdev,ball.hdev这几个例程。大概过程差不多是:找到圆形区域--亚像素边缘--结果曲线分段--筛选出圆形--拟合 二、要测量一个圆的直径,可以先通过阈值筛选出黑色部分threshold (Rim, Dark
fit_line_contour_xld.hdevfit_line_contour_xld(Contours : : Algorithm, MaxNumPoints, ClippingEndPoints, Iterations, ClippingFactor : RowBegin, ColBegin, RowEnd, ColEnd, Nr, Nc, Dist)参数说明:1 Contours 输入的轮廓2 Algorithm 拟合直线算法'regression' 标准的最小二乘拟合
Halcon中线条提取的算子主要有:lines_color(Image : Lines : Sigma, Low, High, ExtractWidth, CompleteJunctions : )lines_facet(Image : Lines : MaskSize, Low, High, LightDark : )lines_gauss(Image : Lines : Sigma, Low, High, LightDark, ExtractWidth, LineModel, Complet
先看代码实践dev_update_off ()
dev_close_window ()
*读图
read_image (Image, 'D:/1.bmp')
get_image_size (Image, Width, Height)
*测试提取边缘
edges_image(Image,Amp,Dir,'lanser2',0.5,'none
如何判断一个点是否在多边形内部?(1)面积和判别法:判断目标点与多边形的每条边组成的三角形面积和是否等于该多边形,相等则在多边形内部。--采纳(2)夹角和判别法:判断目标点与所有边的夹角和是否为360度,为360度则在多边形内部。(3)引射线法:从目标点出发引一条射线,看这条射线和多边形所有边的交点数目。如果有奇数个交点,则说明在内部,如果有偶数个交点,则说明在外部。(4)转角法:按照多边形顶点逆时针顺序,根据顶点和判断点连线的方向正负(设定角度逆时针为正)求和判断; 射线法的实现(转
在谈纹理分析之前,先谈谈blog分析。在halcon中,blog分析是最基础的图像处理方法。计算机视觉中的Blob是指图像中的一块连通区域,Blob分析就是对前景/背景分离后的二值图像,进行连通域提取和标记。标记完成的每一个Blob都代表一个前景目标,然后就可以计算Blob的一些相关特征。其优点在于通过Blob提取,可以获得相关区域的信息,但是速度较慢,分析难度大。Blob分析就是对这一块连通区域进行几何分析得到一些重要的几何特征,例如:区域的面积、中心点坐标、质心坐标、最小外接矩形、主轴等。&
(一)Wrong number of values of control parameter 2(HALCON错误代码:1402)这种错误发生算子add_sample_class_mlp中。其原因是你现在的图片计算出来的FeatureVector和之前添加的FeatureVector大小不一致。这是因为训练图片的尺寸大小不致造成的。如下图所示,哪怕是你的图像大小差一行像素,也会造成FeatureVector的大小不同。当然,这也要看你的FeatureVector的算法产生的数据是什么样了。也许有
勇哥的一个案子里需求如下:分割出齿轮的小齿,小齿要排列规则,图像大小固定由于齿轮数量有40多个,因此分割要求速度快分割后的图片形成磁盘文件 (图1 分割后的图片样例)(图2 要分割的齿轮和极坐标转换后的效果) 这个需求如果不考虑速度的话,是很简单的。最简单的是转动图片固定角度,然后用一个矩形ROI去切割固定位置的小齿。但是这个办法由于耗时太长,能实现功能,却达不到速度要求。还有一个办法是crop_domain算子切割小齿,然后再仿射变换