在UML 2.0的13种图形中,类图是使用频率最高的UML图之一。Martin Fowler在其著作《UML Distilled: A Brief Guide to the Standard Object Modeling Language, Third Edition》(《UML精粹:标准对象建模语言简明指南(第3版)》)中有这么一段:“If someone were to come up to you in a dark alley and say, 'Psst, wa
勇哥想附加一个sql server的数据库,结果报错,说这个数据库是用高版本创建的,又遇到该死的版本问题了。于是想到怎么不用sql server management studio打开个数据库,这样我起码可以抄一下表结构,重建数据表。勇哥先打开vs2019,这已经是勇哥电脑里最高版本的vs了,这样确保比数据库文件的版本要高了。然后随便新建一个C#工程,在项目中点击工具→连接到数据库,选择数据库文件。然后就看到表了!!还可以切换到另一种数据库表浏览模式,这样表的结构都可以看到了!话说,要为vs这个
前段时间一直在做图像模板匹配。需要对旋转模板进行匹配,并且对速度精度都有较高的要求。OpenCV里面并没有较好的解决方法。cvMatchTemplate( const CvArr* image, constCvArr* templ,CvArr* result,int method )
Image 待搜索图像
Templ 模板图像
Result 匹
使用opencv的一些内置的算法来实现对图像特征的检测 从图像中提取的到的特征可以用来进行图像的匹配和检索常用的图像特征检测算法Harris:检测角点SIFT:检测斑点SURF:检测斑点FAST:检测角点BRIEF:检测斑点什么是图像特征? 图像特征就是图像中最具有独特性和具有区别性的图像区域.在图像中特征区域主要分布在角点,高密度区域,边缘(边缘可以将图像分成多个区域),斑点(与周围像素差别很大的区域)cornerHarrir()角点的检测import cv2
import&nb
图像特征的匹配 通过对图像提取特征后,得到特征点和描述特征点信息的特征向量,在对图像的检索和匹配当中主要通过对描述符[特征向量]的计算来实现,下面主要通过ORB来进行图像特征的提取,使用不同的算法来实现图像的匹配.1.暴力匹配(Brute-Force)2.K-临近匹配3.FLANN匹配(Fast Library for Approximate Nearest Neighbors)www.cs.ubc.ca/research/flann ORB在对特征的提取过程中,返回的特征描述符是一个带方向
为何需要进行亚像素定位?数字图像通常是离散化成像素;每个像素对应一个整数坐标位置;整数坐标位置对于很多应用并不精确,比如跟踪、相机标定、图像配准、图像拼接以及三维重构;为达到有些应用的精确性,需要精确到浮点坐标位置;所以亚像素定位问题。亚像素定位就是计算特征所在图像中的真实位置,而真实位置有时候并不在像素所在整数坐标位置上,而是在像素的内部。点的灰度分布特征跟二维高斯模型很相似,中心处最亮,离中心距离越远会随之变暗。所以这里的图像特征,我们用高斯模型进行描述。利用高斯模型,我们可以构建点的最终模
霍夫变换检测霍夫变换之直线检测霍夫变换直线检测前提条件-边缘检测已经完成平面空间到极坐标空间的转换(空间域向霍夫域的转换)检测原理两点确定一条直线,通过一点可以确定无数条直线,极坐标直线公式每个点通过角度取不同的值,都能在横坐标为角度值,纵坐标为ρ值的坐标系内确定一条曲线,只要角度值的精细度足够。ρ代表直线到原点的距离。对每个像素采取这样的操作,将会得出很多这样的曲线,这些曲线的交点证明,这些点所在的那个角度所通过的直线到原点距离相等,则证明这些点就在同一条直线上。从运算的复杂程度来看openc
上一篇博客简要介绍了一下常用的张正友标定法的流程,其中获取了摄像机的内参矩阵K,和畸变系数D。1.在普通相机cv模型中,畸变系数主要有下面几个:(k1; k2; p1; p2[; k3[; k4; k5; k6]] ,其中最常用的是前面四个,k1,k2为径向畸变系数,p1,p2为切向畸变系数。2.在fisheye模型中,畸变系数主要有下面几个(k1,k2,k3,k4). 因为cv和fisheye的镜头畸变模型不一样,所以畸变系数也会有所不同,具体在畸变校正时的公式也不同,具体公式请参见
博主在博客园的第一篇博客,以著名的张大牛标定法开始吧!具体标定原理就不详细说了,资料数不胜数,重点看张正友的原著《A Flexible New Technique for Camera Calibration》,搞明白这篇文章就足够了。好了,现在主要说一下标定过程,并附上博主自己调用Opencv接口编写的代码。1.拍摄棋盘格图片,8幅左右合适,文献里说n=8时,最小二乘法计算内参有稳定解。所以我就拍了9幅。2. 读取棋盘格图像,提取角点(注意:都是内角点)。为了提高角点提取精度,进一步进行亚像素
OpenCV中常用的角点检测为Harris角点和ShiTomasi角点。以OpenCV源代码文件 .\opencv\sources\samples\cpp\tutorial_code\TrackingMotion\cornerDetector_Demo.cpp为例,主要分析其中的这两种角点检测源代码。角点检测数学原理请参考我之前转载的一篇博客 http://www.cnblogs.com/riddick/p/7645904.html,分析的很详细,不再赘述。本文主要分析其源代码:1.