处理要求
椭圆/圆环(产品易变形,为椭圆)内外圆毛刺(凸起)缺口(凹陷)检测。
处理方法1
方法一思路
1、这是一个圆环产品检测,我们可以通过产品区域与标准圆环进行比较得出不良区域。
2、为了避免误检、误判,我们可以通过区域筛选阈值偏移的方法滤除干扰区域,可以将标准圆环放大消除一些圆度导致干扰。
3、根据不同用户的精度要求,可以通过调节缺陷面积进行筛选。
4、方法1的代码量有点多,但是更贴近工业现场使用。
方法一halcon源码
dev_close_window ()read_image (Image, 'C:/Users/22967/Desktop/圆环缺陷检测/处理1.jpg')dev_open_window_fit_image (Image, 0, 0, -1, -1, WindowHandle)dev_display (Image)*********************方法一*******************************变量定义* 卡尺测量参数CenterRow:=0CenterColumn:=0CenterRadius:=0* 灰度分割阈值偏移ThresholdOffest:=80* 缺陷区域面积阈值NGArea:=50*圆环内外偏移阈值RadiusOffest:=5* Image Acquisition 01: Code generated by Image Acquisition 01list_files ('C:/Users/22967/Desktop/圆环缺陷检测', ['files','follow_links'], ImageFiles)tuple_regexp_select (ImageFiles, ['\\.(tif|tiff|gif|bmp|jpg|jpeg|jp2|png|pcx|pgm|ppm|pbm|xwd|ima|hobj)$','ignore_case'], ImageFiles)for Index := 0 to |ImageFiles| - 1 by 1 read_image (Image, ImageFiles[Index]) rgb1_to_gray (Image, GrayImage) *****圆环灰度筛选 binary_threshold (GrayImage, Region, 'max_separability', 'dark', UsedThreshold) threshold (GrayImage, Region1, 0, UsedThreshold+ThresholdOffest) *分割连通域 connection (Region1, ConnectedRegions) *选取圆环区域 select_shape_std (ConnectedRegions, SelectedRegions, 'max_area', 70) *滤除圆环边缘毛刺 opening_circle (SelectedRegions, RegionOpening, 1.5) *****求圆环内外圆 *求圆环外圆 smallest_circle (RegionOpening, Row, Column, Radius) CenterRow[0]:=Row CenterColumn[0]:=Column CenterRadius[0]:=Radius *求圆环内圆 fill_up (RegionOpening, RegionFillUp) difference (RegionFillUp, RegionOpening, RegionDifference) connection (RegionDifference, ConnectedRegions2) select_shape_std (ConnectedRegions2, SelectedRegions1, 'max_area', 70) smallest_circle (SelectedRegions1, Row1, Column1, Radius1) CenterRow[1]:=Row1 CenterColumn[1]:=Column1 CenterRadius[1]:=Radius1 *****对内外圆进行卡尺测量 *创建测量句柄 create_metrology_model (MetrologyHandle) *设置卡尺测量参数 add_metrology_object_circle_measure (MetrologyHandle, CenterRow, CenterColumn, CenterRadius, CenterRadius[0]/10, CenterRadius[0]/60, 1, 4, ['measure_distance','min_score'], [CenterRadius[0]/30,0.2], Indexnumb) *进行测量 apply_metrology_model (Image, MetrologyHandle) *得到测量结果 get_metrology_object_result (MetrologyHandle, 'all', 'all', 'result_type', 'all_param', Parameter) get_metrology_object_result_contour (Contour, MetrologyHandle, 'all', 'all', 1.5) get_metrology_object_measures (Contours, MetrologyHandle, 'all', 'all', Row1, Column1) *****求出标准圆环,进行缺陷检测 *突出部分 gen_circle (Circle, Parameter[0], Parameter[1], Parameter[2]+RadiusOffest) gen_circle (Circle1, Parameter[3], Parameter[4], Parameter[5]-RadiusOffest) difference (Circle, Circle1, RegionDifference1) difference (SelectedRegions, RegionDifference1, RegionDifference2) *内凹部分 gen_circle (Circle2, Parameter[0], Parameter[1], Parameter[2]-RadiusOffest) gen_circle (Circle3,Parameter[3], Parameter[4], Parameter[5]+RadiusOffest) difference (Circle2, Circle3, RegionDifference4) difference (RegionDifference4, SelectedRegions, RegionDifference3) *滤除噪点 opening_circle (RegionDifference2, RegionOpening1, 1.5) opening_circle (RegionDifference3, RegionOpening2, 1.5) *合并缺陷区域 union2 (RegionOpening1, RegionOpening2, RegionUnion) closing_circle (RegionUnion, RegionClosing, 3.5) connection (RegionClosing, ConnectedRegions1) *结果判断 area_center (ConnectedRegions1, Area, Row2, Column2) count_obj (ConnectedRegions1, Number) gen_empty_obj (EmptyObject) for Index1 := 1 to Number by 1 if (Area[Index1-1] > NGArea) select_obj (ConnectedRegions1, ObjectSelected, Index1) smallest_circle (ObjectSelected, Row3, Column3, Radius2) gen_circle (Circle4, Row3, Column3, Radius2) concat_obj (EmptyObject, Circle4, EmptyObject) endif endfor dev_set_draw ('margin') dev_set_line_width (3) dev_display (Image) dev_display (EmptyObject)* stop()
处理效果
处理方法2
方法二思路
1、利用形态学方法进行缺陷检测。
2、缺点就是对圆度不敏感。
方法二halcon源码
dev_close_window ()read_image (Image, 'C:/Users/22967/Desktop/圆环缺陷检测/处理1.jpg')dev_open_window_fit_image (Image, 0, 0, -1, -1, WindowHandle)dev_display (Image)*********************方法二*************************** 灰度分割阈值偏移ThresholdOffest:=80*外圆缺陷查找阈值OutCircleTh:=200.5*内圆缺陷查找阈值InCircleTh:=100.5*缺陷区域面积阈值NGArea:=50*噪点过滤阈值DelNoise:=1.5* Image Acquisition 01: Code generated by Image Acquisition 01list_files ('C:/Users/22967/Desktop/圆环缺陷检测', ['files','follow_links'], ImageFiles)tuple_regexp_select (ImageFiles, ['\\.(tif|tiff|gif|bmp|jpg|jpeg|jp2|png|pcx|pgm|ppm|pbm|xwd|ima|hobj)$','ignore_case'], ImageFiles)for Index := 0 to |ImageFiles| - 1 by 1 *读入图片 read_image (Image, ImageFiles[Index]) rgb1_to_gray (Image, GrayImage) *二值化选取垫片区域 binary_threshold (GrayImage, Region, 'max_separability', 'dark', UsedThreshold) threshold (GrayImage, Region1, 0, UsedThreshold+ThresholdOffest) connection (Region1, ConnectedRegions) select_shape_std (ConnectedRegions, SelectedRegions, 'max_area', 70) *外圆缺陷查找 fill_up (SelectedRegions, RegionFillUp1) opening_circle (RegionFillUp1, RegionOpening, OutCircleTh) difference (RegionFillUp1, RegionOpening, RegionDifference5) *内圆缺陷查找 difference (RegionFillUp1, SelectedRegions, RegionDifference6) connection (RegionDifference6, ConnectedRegions3) select_shape_std (ConnectedRegions3, SelectedRegions2, 'max_area', 70) opening_circle (SelectedRegions2, RegionOpening3, InCircleTh) difference (SelectedRegions2, RegionOpening3, RegionDifference7) *合并缺陷区域 union2 (RegionDifference5, RegionDifference7, RegionUnion1) opening_circle (RegionUnion1, RegionOpening4, DelNoise) connection (RegionOpening4, ConnectedRegions4) *结果判断 area_center (ConnectedRegions4, Area1, Row4, Column4) gen_empty_obj (EmptyObject1) for Index1 := 1 to |Area1| by 1 if (Area1[Index1-1] > NGArea) select_obj (ConnectedRegions4, ObjectSelected, Index1) smallest_circle (ObjectSelected, Row3, Column3, Radius2) gen_circle (Circle4, Row3, Column3, Radius2) concat_obj (EmptyObject1, Circle4, EmptyObject1) endif endfor *显示结果 dev_set_draw ('margin') dev_set_line_width (3) dev_display (Image) dev_display (EmptyObject1) stop()
处理效果
转载自:
https://blog.csdn.net/cashmood/article/details/109637419
本文出自勇哥的网站《少有人走的路》wwww.skcircle.com,转载请注明出处!讨论可扫码加群:


