原理:
霍夫变换圆检测原理和直线相似,直线检测需要两个参数(theta,r)。圆形需要圆心做坐标两个参数和半径。
对左边做霍夫圆变换可以发现圆形的位置变成了一个两点,说明
HoughCircles(
image,
outputArray circles, 发现圆信息
int method, 方法-HOUGH_GRADIENT
double dp, dp = 1;
double mindist, 最短距离,可以分辨是两个圆的圆心的最小像素距离,否则认为是同心圆
double param1, canny edge detection low threshold,默认是100?
double param2, 中心点累加器阈值–候选圆心
int minradius, 最小半径
int maxradius 最大半径
)
代码
#include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #include <iostream> #include <stdio.h> using namespace cv; using namespace std; /** @function main */ int main(int argc, char** argv) { Mat src, src_gray; ///读到一张图片 src = imread("1.jpg"); if( !src.data ) { return -1; } /// 转换到灰度 cvtColor( src, src_gray, CV_BGR2GRAY ); /// 降低噪声以避免我们得到错误的检测 GaussianBlur( src_gray, src_gray, Size(9, 9), 2, 2 ); vector<Vec3f> circles; /// Apply the Hough Transform to find the circles HoughCircles( src_gray, circles, CV_HOUGH_GRADIENT, 1, 10, 100, 10, 150, 220 ); // src_gray: Input image (grayscale) //circles: A vector that stores sets of 3 values: x_{c}, y_{c}, r for each detected circle. //CV_HOUGH_GRADIENT: Define the detection method. Currently this is the only one available in OpenCV //dp = 1: The inverse ratio of resolution //min_dist = src_gray.rows/8: Minimum distance between detected centers //param_1 = 200: Upper threshold for the internal Canny edge detector //param_2 = 100*: Threshold for center detection. //min_radius = 0: Minimum radio to be detected. If unknown, put zero as default. //max_radius = 0: Maximum radius to be detected. If unknown, put zero as default /// Draw the circles detected for( size_t i = 0; i < circles.size(); i++ ) { Point center(cvRound(circles[i][0]), cvRound(circles[i][1])); int radius = cvRound(circles[i][2]); // circle center circle( src, center, 3, Scalar(0,255,0), -1, 8, 0 ); // circle outline circle( src, center, radius, Scalar(0,0,255), 3, 8, 0 ); } cout<<src.rows; /// Show your results namedWindow( "Hough Circle Transform Demo", CV_WINDOW_AUTOSIZE ); imshow( "Hough Circle Transform Demo", src ); waitKey(0); return 0; }
效果:
————————————————
版权声明:本文为CSDN博主「南山二毛」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_16481211/article/details/79614339

