单相机标定的目的是完成像素坐标到世界坐标之间在的转换。
使用halcon标定助手完成的即是单相机标定。
程序运行后,载入10张标定板文件,最后用calibrate_cameras算子执行标定。
这一步相当于标定向导中载入十标定板图片,最后点击标定按钮。
有关halcon标定向导的标定说明见勇哥的另一篇贴子《勇哥的视觉实验:halcon的标定助手》。
标定完成后,接下来进行测量。
先测量标定版外框之间的宽度,你可能注意到它的值是3.992cm,这个值明显不对。
因为照片中人托着标定板,少说也有半米宽是不是?
其实是因为代码中勇哥指定标定板的描述文件不对的原因。(它不是图片中那块巨大的标定板的描述文件)
CalTabDescrFile:='calib_40mmThick1.5.descr'
接下来显示标定板全部圆的半径1,半径2的平均值,以及这个平均值的标准差。
这个平均值与标准差分为图像坐标系和世界坐标系的两组值来显示。
代码如下:
dev_close_window() dev_open_window(0, 0, 768, 576, 'black', WindowHandle) dev_update_off() dev_set_draw('margin') dev_set_line_width(3) set_display_font(WindowHandle, 14, 'mono', 'true', 'false') *这里的标定板文件名要改成halcon安装目录下的calib目录下有的名字 *例如勇哥的安装目录是:E:\Program Files\MVTec\HALCON-18.11-Progress\calib CalTabDescrFile:='calib_40mmThick1.5.descr' gen_cam_par_area_scan_division (0.008, 0, 0.0000086, 0.0000086, 384, 288, 768, 576, StartCamPar) create_calib_data ('calibration_object', 1, 1, CalibDataID) set_calib_data_cam_param (CalibDataID, 0, [], StartCamPar) set_calib_data_calib_object (CalibDataID, 0, CalTabDescrFile) NumImages:=10 for I:=1 to NumImages by 1 read_image (Image, 'calib/calib-3d-coord-' + I$'02d') dev_display (Image) Message := 'Find calibration plate in\nall calibration images (' + I + '/' + NumImages + ')' disp_message (WindowHandle, Message, 'window', 12, 12, 'black', 'true') find_calib_object (Image, CalibDataID, 0, 0, I - 1, [], []) get_calib_data(CalibDataID, 'camera', 0, 'init_params', StartCamPar) *这里取得的外参Pose是预估值 get_calib_data_observ_points(CalibDataID, 0, 0, I-1, Row, Column, Index, Pose) get_calib_data_observ_contours(Contours, CalibDataID, 'caltab', 0, 0, I-1) gen_cross_contour_xld(Cross, Row, Column, 6, 0.785398) dev_set_color('green') dev_display(Contours) dev_set_color('yellow') dev_display(Cross) endfor disp_continue_message(WindowHandle, 'black','true') stop() *单相机标定 calibrate_cameras(CalibDataID, Error) get_calib_data(CalibDataID, 'camera', 0, 'params', CamParam) get_calib_data(CalibDataID, 'calib_obj_pose', [0,0], 'pose', Pose) for I := 1 to NumImages by 1 read_image (Image, 'calib/calib-3d-coord-' + I$'02d') * * 现在测量标定片外黑边的宽度 get_measure_positions (Image, PlateRegion, CalibDataID, I, Distance, Phi, RowCenter, ColumnCenter) gen_rectangle2_contour_xld (Rectangle, RowCenter, ColumnCenter, Phi, Distance * 0.52, 8) gen_measure_rectangle2 (RowCenter, ColumnCenter, Phi, Distance * 0.52, 8, 768, 576, 'nearest_neighbor', MeasureHandle) * measure_pos (Image, MeasureHandle, 1, 40, 'all', 'all', RowEdge, ColumnEdge, Amplitude, Distance1) Rows := [RowEdge[0],RowEdge[|RowEdge| - 1]] Columns := [ColumnEdge[0],ColumnEdge[|RowEdge| - 1]] gen_cross_contour_xld (Cross, Rows, Columns, 16, Phi) * * 两个边框上的点转为世界坐标 get_calib_data (CalibDataID, 'calib_obj_pose', [0,I - 1], 'pose', Pose) image_points_to_world_plane (CamParam, Pose, Rows, Columns, 'm', SX, SY) distance_pp (SY[0], SX[0], SY[1], SX[1], Width) * * 显示测量结果 dev_display (Image) dev_set_color ('white') dev_set_line_width (3) dev_display (Rectangle) dev_set_color ('green') dev_set_draw ('fill') dev_set_line_width (2) dev_display (Cross) dev_set_draw ('margin') disp_message (WindowHandle, 'Width = ' + (Width * 100)$'8.3f' + 'cm', 'window', 12, 12, 'black', 'true') disp_continue_message (WindowHandle, 'black', 'true') *stop () wait_seconds(0.5) * * Now, measure the size of the calibration marks * * Extract the ellipses in the image erosion_circle (PlateRegion, ROI, 17.5) reduce_domain (Image, ROI, ImageReduced) edges_sub_pix (ImageReduced, Edges, 'canny', 1, 20, 60) select_contours_xld (Edges, SelectedEdges, 'contour_length', 20, 99999999, -0.5, 0.5) * Fit ellipses to extracted edges fit_ellipse_contour_xld (SelectedEdges, 'fitzgibbon', -1, 2, 0, 200, 3, 2, Row, Column, Phi, Radius1, Radius2, StartPhi, EndPhi, PointOrder) MeanRadius1 := mean(Radius1) MeanRadius2 := mean(Radius2) DevRadius1 := deviation(Radius1) DevRadius2 := deviation(Radius2) * Transform the ellipses to world coordinates, where they should be circles * and convert the circles from meters to millimeters so that we can see them. contour_to_world_plane_xld (SelectedEdges, WorldCircles, CamParam, Pose, 'mm') * Fit ellipses to the circles in world coordinates fit_ellipse_contour_xld (WorldCircles, 'fitzgibbon', -1, 2, 0, 200, 3, 2, Row, Column, Phi, RadiusW1, RadiusW2, StartPhi, EndPhi, PointOrder) MeanRadiusW1 := mean(RadiusW1) MeanRadiusW2 := mean(RadiusW2) DevRadiusW1 := deviation(RadiusW1) DevRadiusW2 := deviation(RadiusW2) * * Display results of ellipse measurement dev_display (Image) dev_set_color ('yellow') dev_set_line_width (3) dev_display (SelectedEdges) Message := 'Measured dimensions of the ellipses' Message[0] := ' Mean Radius1; Mean Radius2; (Standard deviations [%])' Message[1] := 'Image coordinates: ' + MeanRadius1$'5.2f' + 'px; ' + MeanRadius2$'5.2f' + 'px (' + (DevRadius1 / MeanRadius1 * 100)$'4.2f' + ', ' + (DevRadius2 / MeanRadius2 * 100)$'4.2f' + ')' Message[2] := 'World coordinates: ' + (MeanRadiusW1 / 10)$'5.2f' + 'cm; ' + (MeanRadiusW2 / 10)$'5.2f' + 'cm (' + (DevRadiusW1 / MeanRadiusW1 * 100)$'4.2f' + ', ' + (DevRadiusW2 / MeanRadiusW2 * 100)$'4.2f' + ')' disp_message (WindowHandle, Message, 'window', 12, 12, 'black', 'true') if (I < 10) disp_continue_message (WindowHandle, 'black', 'true') stop () endif wait_seconds(0.5) endfor
自定义函数get_measure_positions的代码如下:
* 提取特征 threshold (Image, Region, 0, 120) connection (Region, ConnectedRegions) select_shape (ConnectedRegions, SelectedRegions, ['holes_num','rect2_len1','rect2_len2'], 'and', [1,120,120], [1,200,200]) fill_up (SelectedRegions, PlateRegion) *从表的边框构造线条 gen_contour_region_xld (PlateRegion, Contours, 'center') //画轮廓 segment_contours_xld (Contours, ContoursSplit, 'lines', 7, 4, 2)//分割轮廓 regress_contours_xld (ContoursSplit, RegressContours, 'no', 1)//计算回归(后一步的先决条件,下一步包含direction or currature) select_contours_xld (RegressContours, VerticalContours, 'direction', rad(45), rad(135), -0.5, 0.5) //过滤轮廓 select_contours_xld (VerticalContours, LongContours, 'length', 150, 500, -0.5, 0.5) * 获取两条线段的端点 select_obj (LongContours, Contour, 1)//选第一条线 get_contour_xld (Contour, Rows, Columns) RowBegin1 := Rows[0] //两端点 ColBegin1 := Columns[0] RowEnd1 := Rows[|Rows| - 1] ColEnd1 := Columns[|Columns| - 1] select_obj (LongContours, Contour, 2)//第二条线 get_contour_xld (Contour, Rows, Columns) RowBegin2 := Rows[0] ColBegin2 := Columns[0] RowEnd2 := Rows[|Rows| - 1] ColEnd2 := Columns[|Columns| - 1] get_calib_data_observ_points (CalibDataID, 0, 0, PoseIndex - 1, Row, Column, PoseIndex, _Pose) //获取点坐标 Row1 := Row[find(PoseIndex,21)] //第22个和28个点 Row2 := Row[find(PoseIndex,27)] Column1 := Column[find(PoseIndex,21)] Column2 := Column[find(PoseIndex,27)] *找两个交点坐标 intersection_lines (Row1, Column1, Row2, Column2, RowBegin1, ColBegin1, RowEnd1, ColEnd1, RowA, ColA, IsOverlapping) //第一个交点 intersection_lines (Row1, Column1, Row2, Column2, RowBegin2, ColBegin2, RowEnd2, ColEnd2, RowB, ColB, IsOverlapping) //第二个交点 distance_pp (RowA, ColA, RowB, ColB, Distance) //距离 line_orientation (RowA, ColA, RowB, ColB, Phi) //角度 RowCenter := (RowA + RowB) / 2 //中心点 ColumnCenter := (ColA + ColB) / 2 return ()
这个函数的参数定义如下:
当载入标定板的描述文件后,相当于已知了世界坐系。7*7的圆点标定板又确定了图像坐标,知道了图像坐标与世界坐标就可以求出相机的内参与外参。
世界坐标系转像素坐标系的公式如下:
其中,红框处即世界坐标,相当于标定板描述文件的信息。
蓝框处即相机的内参,黄框处即相机的外参。
即图像坐标系。
这样,三样参数:相机内外参、图像坐标、世界坐标
已经任意两个,则可以求出第三个来。
上面的例程也就是说知道了世界坐标和图像坐标,求出相机内外参。
《本文源代码下载》
---------------------
作者:hackpig
来源:www.skcircle.com
版权声明:本文为博主原创文章,转载请附上博文链接!

