1.原理概述
K-近邻算法(KNN)概述
最简单最初级的分类器是将全部的训练数据所对应的类别都记录下来,当测试对象的属性和某个训练对象的属性完全匹配时,便可以对其进行分类。但是怎么可能所有测试对象都会找到与之完全匹配的训练对象呢,其次就是存在一个测试对象同时与多个训练对象匹配,导致一个训练对象被分到了多个类的问题,基于这些问题呢,就产生了KNN。
KNN是通过测量不同特征值之间的距离进行分类。它的的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。K通常是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。
下面通过一个简单的例子说明一下:如下图,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类。
由此也说明了KNN算法的结果很大程度取决于K的选择。
在KNN中,通过计算对象间距离来作为各个对象之间的非相似性指标,避免了对象之间的匹配问题,在这里距离一般使用欧氏距离或曼哈顿距离:
同时,KNN通过依据k个对象中占优的类别进行决策,而不是单一的对象类别决策。这两点就是KNN算法的优势。
接下来对KNN算法的思想总结一下:就是在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别就是K个数据中出现次数最多的那个分类,其算法的描述为:
1)计算测试数据与各个训练数据之间的距离;
2)按照距离的递增关系进行排序;
3)选取距离最小的K个点;
4)确定前K个点所在类别的出现频率;
5)返回前K个点中出现频率最高的类别作为测试数据的预测分类。
2.Python实现
1.使用python导入数据
from numpy import * import operator from os import listdir def createDataSet(): group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) labels = ['A','A','B','B'] return group, labels 检验函数: import kNN group,labels = kNN.createDataSet() print(group) print(labels)
结果:
[[ 1. 1.1]
[ 1. 1. ]
[ 0. 0. ]
[ 0. 0.1]]
['A', 'A', 'B', 'B']
2.实施kNN分类算法
伪代码:
对未知类别属性的数据集中的每个点依次执行以下操作:
1. 计算已知类别数据集中的点与当前点之间的距离;
2. 按照距离递增次序排序;
3. 选取与当前距离最小的k个点;
4. 确定前k个点所在类别的出现频率;
5. 返回前k个点出现频率最高的类别作为当前点的预测分类。
def classify0(inX, dataSet, labels, k): dataSetSize = dataSet.shape[0] diffMat = tile(inX, (dataSetSize,1)) - dataSet sqDiffMat = diffMat**2 sqDistances = sqDiffMat.sum(axis=1) distances = sqDistances**0.5 sortedDistIndicies = distances.argsort() classCount={} for i in range(k): voteIlabel = labels[sortedDistIndicies[i]] classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0]
3.手写识别系统
这里构造的系统只能识别数字0到9,需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小:宽高是32像素32像素的黑白图像。
下面函数创建11024的NumPy数组,然后打开给定的文件,循环读出文件的前32行,并将每行的头32个字符值存储在NumPy数组中,最后返回数组。
def img2vector(filename): returnVect = zeros((1,1024)) fr = open(filename) for i in range(32): lineStr = fr.readline() for j in range(32): returnVect[0,32*i+j] = int(lineStr[j]) return returnVec
检验函数:
import kNN testVector = kNN.img2vector("0_13.txt") print(testVector[0,0:31]) print(testVector[0,32:63])
结果:
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
def handwritingClassTest(): hwLabels = [] trainingFileList = listdir('trainingDigits') m = len(trainingFileList) trainingMat = zeros((m,1024)) for i in range(m): fileNameStr = trainingFileList[i] fileStr = fileNameStr.split('.')[0] classNumStr = int(fileStr.split('_')[0]) hwLabels.append(classNumStr) trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr) testFileList = listdir('testDigits') errorCount = 0.0 mTest = len(testFileList) for i in range(mTest): fileNameStr = testFileList[i] fileStr = fileNameStr.split('.')[0] classNumStr = int(fileStr.split('_')[0]) vectorUnderTest = img2vector('testDigits/%s' % fileNameStr) classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3) print("the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)) if (classifierResult != classNumStr): errorCount += 1.0 print("\nthe total number of errors is: %d" % errorCount) print("\nthe total error rate is: %f" % (errorCount/float(mTest))) 检验函数: import kNN print(kNN.handwritingClassTest())
结果:
the classifier came back with: 9, the real answer is: 9
the classifier came back with: 9, the real answer is: 9
the classifier came back with: 9, the real answer is: 9
the total number of errors is: 10
the total error rate is: 0.010571
None
K_近邻算法识别手写数字数据集,错误率为1.06%。
在使用这个算法时,算法的实行效率并不高。因为算法需要为每个测试向量做2000次距离计算,每个距离计算包括1024个维度浮点运算,总计要执行900次,此外,我们还需要为测试向量准备2MB的存储空间。K决策树就是k近邻算法的优化版。

