[置顶]python知识导航贴,持续更新

[置顶]C# 语言高级特性知识导航贴,持续更新

[置顶]netMarketing类库: 类库说明

[置顶]本站视觉相关教程整理贴子,持续更新

[置顶]C++相关导航贴,持续更新

[置顶]本站收费服务公告(netMarketing源码,工业自动化行业培训班等)

[置顶]2020年勇哥的机器视觉实验项目清单(大纲)

[置顶]本站连载贴子系列,持续更新中……

[置顶]勇哥的免费视频教程清单

[置顶]勇哥在B站发布的视频清单

[置顶]运动控制专题,持续更新

坐标旋转变换公式的推导

我们知道autocad中的ucs指令可以变换坐标系,然后可以查询同一个点在不同坐标系下的位置。勇哥想实现这个功能,因此先收集一些资料。1 围绕原点的旋转如下图, 在2维坐标上,有一点p(x, y) , 直线opの长度为r, 直线op和x轴的正向的夹角为a。 直线op围绕原点做逆时针方向b度的旋转,到达p’ (s,t)s = r cos(a + b) = r cos(a)cos(b) – r sin...

沉浸式学习线性代数!这里有一本全交互的线性代数书

今天,我们给大家介绍一本好玩的线性代数书籍。线性代数的书籍那么多,这本却独具特色。准确来讲,量词似乎不能用「本」,因为它需要在网页上阅读,更重要的是,书里的图是可以动的,读者还可以拖动图。这种交互式图看起来很有意思~书籍地址:http://http://immersivemath.com/ila/index.html《Immersive Linear Algebra》的作者是 J. Ström、K...

如何通俗的解释仿射变换?

知乎里有些扫盲贴真是精华,讲得相当通俗易懂。 把复杂的东西讲清楚也是件不容易的事,这篇文章的作者是用了真心。简单来说,“仿射变换”就是:“线性变换”+“平移”。先看什么是线性变换?1 线性变换线性变换从几何直观有三个要点:变换前是直线的,变换后依然是直线直线比例保持不变变换前是原点的,变换后依然是原点比如说旋转1.1 代数简单讲一下旋转是怎么实现的,可以让我们进一步了解代数是怎么描述线性变换的。...

affine transformation matrix 仿射变换矩阵 与 OpenGL

变换模型是指根据待匹配图像与背景图像之间几何畸变的情况,所选择的能最佳拟合两幅图像之间变化的几何变换模型。可采用的变换模型有如下几种:刚性变换、仿射变换、透视变换和非线形变换等,如下图:参考: http://wenku.baidu.com/view/826a796027d3240c8447ef20.html 其中第三个的仿射变换就是我们这节要讨论的。仿射变换(Affine Transformati...

几何变换详解

在三维图形学中,几何变换大致分为三种,平移变换(Translation),缩放变换(Scaling),旋转变换(Rotation)。以下讨论皆针对DirectX,所以使用左手坐标系。平移变换将三维空间中的一个点[x, y, z, 1]移动到另外一个点[x', y', z', 1],三个坐标轴的移动分量分别为dx=Tx, dy=Ty, dz=Tz, 即x' = x +...

C# Drawing.Drawing2D.Matrix类,二维矩阵几何变换的3x3仿射矩阵类

本文介绍的Matrix,是.net自带的类. 其命名空间为:System.Drawing.Drawing2D注意并不是netMarketing中那个netMarketing.graphics.Matrix在GDI+中,可以在Matrix对象中存储仿射变换。由于表示仿射变换的矩阵的第三列总是(0,0,1),因此在构造Matrix对象时,只需要指定前两列的6个数。语句:Matrix myMatrix...

C# 一个gdi+中应用矩阵进行二维变换图片的例子

Introduction2D image transformation in .NET has been very much simplified by the Matrix class in the System.Drawing.Drawing2D namespace. In this article, I would like to share with the reader on the u...

Android中关于矩阵(Matrix)前乘后乘的一些认识

在上一篇文章中,我们讲到,在Android中,scale(缩放),rotation(旋转)和 translation(平移)都是以矩阵(Matrix)的形式定义的,实际上在图形学中,这些平面图形的变换都是以矩阵的形式存在的。先来回顾一下,下面,左中右分别scale(缩放),rotation(旋转)和 translation(平移)在Android中的矩阵表示:如果只是单纯的应用某一个变换,我们都知...

2D平面中关于矩阵(Matrix)跟图形变换的讲解

在二维平面上,常用的有以下三种基本的图形变化:1)Translation2)Scale3)Rotation在Android的开发中,我们也经常会用到这样的一些图形变换,尤其是我们在写自定义View时,更是会经常利用到Matrix来实现一些效果,比如平移,旋转,缩放及切变等,相信很多朋友应该很想知道,矩阵实现这种变换的原理是什么,什么是矩阵的左乘右乘,它们在实现效果上有什么差别吗?今天就让我们一起来...

二维图形的矩阵变换(一)——基本概念

基本的二维变换可包括旋转、缩放、扭曲,和平移四种,而这些几何运算则可以转换为一些基本的矩阵运算:这几个变换都是线性的,但平移运算不是线性的,不能通过2*2矩阵运算完成。若要将点 (2, 1)在 x 方向将其平移 3 个单位,在 y 方向将其平移 4 个单位。 可通过先使用矩阵乘法再使用矩阵加法来完成此操作。综合这几种基本运算,数学家们将其统一为一个3*3矩阵,存储形式如下:由于表示仿射变换的矩阵的...

【Unity】6.2 在VS2015中调试 C# 脚本

Unity虽然是开发游戏用的,但是可以用来验证视觉原理算法。勇哥折腾了几天,无法运行场景后,让场景对应的C#代码断点断下来,不知道怎么回事。反复的的从4.x版本安装到5.x,还是不行。其实不是Unity的版本问题,是教程没教对头。按照下面这个教程则成功了。一、简介这一节先利用GUI显示一个简单的界面(以后还会专门介绍GUI),并解释如何在VS2015中调试C#脚本。本节例子的运行效果如下:二、调试...

几何向量(14):计算光线反射reflect向量

这一篇我们来聊一下光线反射的基础计算,看过点叉积篇的小伙伴们肯定注意到底下有一句话,就是“为了以后的光线反射reflect计算”,这里我们就别以后以后了,现在就动起来。光线反射是一个非常重要的概念,或者说常识,这里我们来聊一下真实世界。现实世界中,我们眼睛之所以看到各种各样的物体,其原因就是太阳发出的光线照射到地球上,然后经过反射后进入人的眼睛,人的眼睛接收到光子后在视网膜上成像,然后通过生物信号...

几何向量(13):点与多边形(凸)

国庆放假前写一篇,搞不好整个国庆没得机会写了,在几何开发中,点与凸多边形的关系判断属于很常见的,比如射线与平面相交,判断交点是否在若干顶点组成的多边形中。 和之前判断点在三角形中类似,先来一张点与多边形关系示意图,如下: ①很容易就看的出来,五个夹角之和等于360°,②可以看得出来∠BPC=其他四角之和,除非∠BPC在线段BC上,不然小于180°,则五夹角之和小于360°。...

几何向量(12):点与三角形

判断点在三角形内部,属于三维开发中很常用的一种算法,之前搞忘记说了,前面我们判断射线与平面,如果再加上判断交点是否在三角形内的计算就更好了。 好,假设我们有个三角形,和三角形所在平面的一个点,那么怎么判断点与三角形的关系,先来个示意图,如下:可以看的出来,如果点P在三角形内部,那么P与三角形ABC组成的六个夹角之和为180°(三角形内角和180°),如果在三角形外部,则不然。...

几何向量(11):射线与平面

射线与平面的检测属于三维空间典型的检测算法之一,属于三维中基础实用一通百通的技术之一。 之前我们在空间点与平面中已经大致了解了其中的概念和原理,不清楚的可以先回过去看下,空间表示法A*x+B*y+C*z+D = 0,射线表示法为start + n*dir(起点+模长*朝向),那么射线与平面检测,就是解方程组就好了,还是画个图方便理解,如下:程序设计思路也简单,首先使用叉积计算出平面单位...

几何向量(10):三维点与直线

在三维图形问题中,点和直线计算是很常见的,比如,已知三维空间中一条直线和任意非直线上的点,求点到直线的垂线(或垂点),这个问题比较典型,基本上就属于一系列三维空间点与直线关系的代表。 首先如下图:学到现在的几何向量,一眼就看得出来,只需要根据向量PC1与向量PV的点积等于0,得到方程组就可以最终计算出P点坐标了。首先我们确定三维空间中P点表示法,使用C1 + n*dir的形式,其中C1为起...

几何向量(9):叉积和夹角(左手定则)

最近又回顾了一遍叉积,概念我们应该了解,几何上就是向量a和b,那么向量a和b的叉积得到向量c,向量c与向量a和b相互垂直,也就是说向量c垂直于向量a和b所在的平面,同时向量c的模长等于向量a和b组成的平行四边形的面积。 物理上叉积的意义就是力矩的意义。 这里回顾一下以前写的叉积篇:叉积 实际上有个重要的问题以前忽视掉了,那就是unity左手坐标系中的叉积计算遵循左...

几何向量(8):Angle/SignedAngle函数解析

最近又跑去温习基础数序去了,没办法,人对某个事物的永久记忆是七次理解才能达成,所以抽空写一些常用的数学计算。 在二维和三维开发中,计算向量之间夹角属于很常见的操作,在数学中我们可以使用下面: 1.余弦定理,如果我们知道三边的情况下,使用余弦定理可以计算出任意角的角度,如图: 2.点乘(点积),我们可以通过点乘(点积)推导出: a·b...

几何向量(7):ScreenToViewportPoint/ScreenToWorldPoint函数解析

三维引擎中Camera类带有一系列几何函数,这里我们看一下unity中这两个Camera提供的几何函数的意义和实现: 1.ScreenToViewportPoint 顾名思义就是屏幕坐标转视口坐标,在渲染流程中,建模->世界->视口->裁剪->视图得到屏幕坐标系中坐标数值,那么阶段性反过来从屏幕到视口的坐标变换也好理解,屏幕的左下角(0,0)到右...

几何向量(6):二维点与直线

这一篇是几何向量的扩展篇之一,因为后面要讲到的CG技术需要这一篇的数学基础,所以额外开一篇进行讲解。 这次我们就观察学习二维中点与直线的重要关系,垂线或者说图形学中的法线,因为这和后续的反射向量、光追计算、镜面计算等有很大依赖关系,比如说我们有一个顶点P处于一块二维镜面前,求这个顶点P在二维镜面中的倒影顶点P',这就需要求出顶点P到镜面所处的直线L的垂线及距离了,如下图: 首先...

空间向量知识点归纳总结(经典)

二维向量即平面向量,三维向量即空间向量。平面向量是在二维平面内既有方向又只有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。空间中具有大小和方向的量叫做空间向量。向量的大小叫做向量的长度或模(modulus)。规定,长度为0的向量叫做零向量,记为0。模为1的向量称为单位向量。与向量a长度相等而方向相反的向量,称为a的相反向量。记为-a;方向相等且模相等的向量称为相等向量...

线性代数(7):仿射变换图形矫正

之前学习完矩阵的理解和作用,又经历过一轮基本仿射变换推导,我想大家对矩阵在实际程序中的应用应该基本了解了,这里我们就实际应用一下。 之前学习的变换过程基本都是变换一个“规范”的图形,这次我们就反过来,把一个“不规范”的图形变换“规范”。 首先作为码农们,我们应该都会阅读大量书籍的,但是为了方便我自己下载过大量pdf文档,因为那样我不需要随身带一本厚重厚重的书,只用带个...

线性代数(6):矩阵变换图形(三维错切变换)

之前我们学习了理解了图形学中的线性代数,而且实际的操作了图形的基础变换,既然学习完基本变换了,那么接下来就看看一些不常见的特殊变换,下面我们就看看错切变换,也称为切变。 这里要介绍一下仿射变换的一个特点,就是“平直性”,因为前面我们理解仿射变换是一个线性变换加上一个平移,线性这个性质就保证了直线变换后还是直线,所以仿射变换,变换后的图形,是直线边的还是直线边。 切变是一...

线性代数(5):矩阵变换图形(三维平移缩放旋转)

这篇博文我只是准备对上一篇博文的内容进行扩展,因为上一篇我写完二维xy仿射坐标系的变换,这一篇我就扩充到三维xyz仿射坐标系的变换推导。 前面我们已经理解学习完矩阵在图形学中的作用,所以这一篇我只做纯推导和图形应用演示。 1.矩阵操作三维仿射坐标系平移,如下图: 三维仿射空间平移无非就是xyz三轴移动,建立齐次坐标和4x4矩阵就能推出来...

线性代数(4):矩阵变换图形(二维平移缩放旋转)

前面我们从理论上理解了图形学中图形的变换过程,具体可以理解为如果要对一个图形A进行变换,那么存在图形A所处的相同原点的仿射空间SpaceA(或者说仿射空间SpaceA中原点处存在一个图形A),这时候我们暂时忽略图形A,只考虑SpaceA经过各种变换最终变换成另一个仿射空间SpaceB(或者说变换后的仿射空间SpaceA与另一个仿射空间SpaceB重合),因为仿射空间SpaceA变换后可能被伸缩...

线性代数(3):理解齐次坐标

前面有个问题我们还没聊开,不知道小伙伴们记得不?在几何向量的基本概念这一章,我们了解了如下两个概念: 1.矢:空间中的一个直线段,当规定其两个端点中一个为起始点,一个位终止点,这个线段就称为一个矢。 2.向量:具有同样长度和方向的失的集合称为一个向量,单独的一个矢为向量的一个代表。 这里就引出了我们迷惑的问题了,因为数学上(当然程序中也一样)表示向量...

机器视觉常见数学公式回顾(一)

机器视觉常见的数学公式很多,下面的贴子会由浅到深依次跟贴下去,以方便大家查阅与记忆。(一) 6个必须有记住的三角函数公式:(二)直线方程相关(1) 直线斜率 经过两点P1(x1,y1), P2(x2,y2) (x1≠x2)的直线斜率的公式:(2)两点之间的距离 平面坐标空间坐标(3)两点式直线方程(4)直线的一般方程(5)两直线交点例题:(6)点到直线的距离 例题:(7)两条平行线间的距离 (三)...

OpenCV畸变校正原理以及损失有效像素原理分析

上一篇博客简要介绍了一下常用的张正友标定法的流程,其中获取了摄像机的内参矩阵K,和畸变系数D。1.在普通相机cv模型中,畸变系数主要有下面几个:(k1; k2; p1; p2[; k3[; k4; k5; k6]] ,其中最常用的是前面四个,k1,k2为径向畸变系数,p1,p2为切向畸变系数。2.在fisheye模型中,畸变系数主要有下面几个(k1,k2,k3,k4). 因为cv和fisheye的...

OpenCV亚像素角点cornerSubPixel()源代码分析

上一篇博客中讲到了goodFeatureToTrack()这个API函数能够获取图像中的强角点。但是获取的角点坐标是整数,但是通常情况下,角点的真实位置并不一定在整数像素位置,因此为了获取更为精确的角点位置坐标,需要角点坐标达到亚像素(subPixel)精度。1. 求取亚像素精度的原理  找到一篇讲述原理非常清楚的文档https://xueyayang.github.io/pdf_posts/%E...

亚像素级点定位及边缘定位算法

在这篇博客里,主要讲解两点:点定位(Point localization)以及边缘定位(Edge localization),均是亚像素级定位精度。当然还有其他定位方法,这里仅针对亮点和边缘两种情形分别进行精确定位。1. 为何需要进行亚像素定位?>数字图像通常是被离散化成像素形式;>每个像素对应一个整数坐标位置;>整数坐标位置对于很多应用然而并不精确,比如跟踪、相机标定、图像配准...
会员中心
搜索
«    2025年4月    »
123456
78910111213
14151617181920
21222324252627
282930
网站分类
标签列表
最新留言
    热门文章 | 热评文章 | 随机文章
文章归档
友情链接
  • 订阅本站的 RSS 2.0 新闻聚合
  • 扫描加本站机器视觉QQ群,验证答案为:halcon勇哥的机器视觉
  • 点击查阅微信群二维码
  • 扫描加勇哥的非标自动化群,验证答案:C#/C++/VB勇哥的非标自动化群
  • 扫描加站长微信:站长微信:abc496103864
  • 扫描加站长QQ:
  • 扫描赞赏本站:
  • 留言板:

Powered By Z-BlogPHP 1.7.2

Copyright Your skcircle.com Rights Reserved.

鄂ICP备18008319号


站长QQ:496103864 微信:abc496103864